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Chaotic orbits of the mushroom billiards display intermittent behaviors. We investigate statistical properties
of this system by constructing an infinite partition on the chaotic part of a Poincaré surface, which illustrates
details of chaotic dynamics. Each piece of the infinite partition has a unique escape time from the half disk
region, and from this result it is shown that, for fixed values of the system parameters, the escape time
distribution obeys a power law 1/ tesc

3 .
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I. INTRODUCTION

Fully chaotic dynamical systems such as the Baker trans-
formation and the Arnold’s cat map are statistically charac-
terized by, for example, exponential decay of correlation
functions with decay rates given by the Pollicotte-Ruelle
resonances �see Ref. �1�, and references therein� and expo-
nentially fast escapes from regions of phase spaces with the
escape rate given by the positive Lyapunov exponents and
the Kolmogolov-Sinai �KS� entropy �2,3�. These properties
are outcomes of uniform hyperbolicity, which means the uni-
form instability of chaotic trajectories.

In contrast to such ideally chaotic systems, phase spaces
of generic Hamiltonian systems consist not only of noninte-
grable chaotic regions but also of integrable regions �regions
filled with tori�, where motions are quasiperiodic �4�, and
therefore the uniform instability does not hold for these sys-
tems. In fact, generic Hamiltonian systems frequently exhibit
power law type behaviors, that are due to occasional trap-
pings of chaotic orbits in neighborhoods of torus regions.
Although these phenomena are observed in many systems
�5–9�, analytical derivations of decaying properties of corre-
lation functions and escape time distributions are difficult
mainly because there exist complex fractal torus structures.

In order to understand power law behaviors in dynamical
systems, nonhyperbolic one-dimensional mappings have
been studied by several authors �e.g., Refs. �10–14�� and they
have found power law behaviors in their models. Therefore it
is natural to imagine a close connection between these non-
hyperbolic maps and mixed type Hamiltonian systems, how-
ever, extensions of these maps to two-dimensional area-
preserving systems are unknown �but see Refs. �15,16��.
Thus it is important to elucidate the typical properties of
nonhyperbolicity in the mixed type Hamiltonian systems.

The mushroom billiard, which has been proposed by
Bunimovich recently �17�, is expected to be a candidate of
analytically tractable model for such problems of mixed type
systems. This is because the mushroom billiard system does
not have the fractal torus structures and chaotic and torus
regions are sharply divided �see Ref. �18� for another ex-
ample of such systems�. Thus the mushroom billiard system
can be thought as an ideal model for understanding mixed

type Hamiltonian systems, and it is currently under active
study �19–23�. An understanding of the classical system
should be important for the study of the quantum version of
the mushroom billiard.

Escape time statistics are important for various applica-
tions, e.g., chemical reactions �24,25�, chaotic ionization
�26�, and fluid dynamics �27�. In these studies, the escape
from a potential well over saddle points was investigated,
while, in this paper, we focus on the statistical properties of
the escape from neighborhoods of torus regions and there is
no saddle point. We show a theoretical derivation of the es-
cape time distribution for the mushroom billiard for fixed
values of the system parameters. In Refs. �20,21�, it has al-
ready been shown that it obeys power law by numerical
simulations and a heuristic analysis. It is shown that our
analytical result agrees with theirs perfectly. In order to de-
rive the escape time distribution, we begin with a construc-
tion of an infinite partition on a Poincaré surface, which also
reveals detailed dynamics in neighborhoods of the outermost
tori.

This paper is organized as follows. In Sec. II, we intro-
duce the mushroom billiard system, and define a Poincaré
map and its inverse transformation. In Sec. III, we construct
the infinite partition by using the inverse of the Poincaré map
recursively. In Sec. IV, the escape time distribution is derived
from the structure of the infinite partition. A brief discussion
is given in Sec. V.

II. POINCARÉ MAP AND ITS INVERSE

The mushroom billiard is defined by the motion of a point
particle on the billiard table depicted in Fig. 1. This table
consists of a half disk �the cap� of radius R and a rectangle
�the stem� of width r and height h �17�. We use the polar
coordinates �u ,��, and the Cartesian coordinates �x ,y�; we
set the origin at the center of the half disk in both cases. The
angle variable � is defined as the angle between the position
vector of the point particle and the vertical axis �see Fig. 1�.

A. The definition of the Poincaré map

We define a Poincaré surface at the top arc of the cap x2

+y2=R2�y�0� with negative momentum in the radial direc-
tion, namely, just after the collision with the arc. For the
coordinates of the Poincaré map, we use the angle � and the*tomo@nse.es.hokudai.ac.jp
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associated angular momentum L. This Poincaré map ��L ,��
is area preserving; it can be proved through a direct calcula-
tion of the Jacobian of the map which is equal to 1 every-
where. This coordinate system is slightly different from the
Birkhoff coordinates, because the former is defined only on
the arc, but the latter on the whole boundary of the billiard
table.

We also set the kinetic energy as vx
2+vy

2=1. Although this
setting is not essential, it is convenient for calculating the
angular momentum L=r�v; the absolute value of the angu-
lar momentum �L� equals the distance from the origin to the
trajectory. In Fig. 1, for example, if a point particle moves on
the line PA in the direction indicated in the figure by the
arrow, its angular momentum L �L�0� equals the length of
the segment AO �the dashed line�, and if a point particle
moves on the line PB in the direction indicated in the figure
by the arrow, the absolute value of the angular momentum
−L �L�0� equals the length of the segment BO �the long-
dashed line�.

We display an example of the Poincaré surface in Fig. 2.
The Poincaré map ��L ,�� is defined on

D = ��L,�� � �− R,R� � �− �/2,�/2��;

the region �L��r is chaotic, and �L��r is filled with torus.
The Poincaré map is symmetric with respect to the origin
�L ,��= �0,0�, i.e., ��L ,��=−��−L ,−��. In the subsequent
subsections, we will restrict the domain of the Poincaré map
to the region of the negative angular momentum in order to
simplify the analysis.

B. The first escape and injection domains

Let us consider a point �L ,�� on the Poincaré surface such
that the orbit of the billiard system �the continuous time
flow� starting from this point escapes from the cap region to
the stem without collision. We define the first escape domain
D1 as all such points on the Poincaré surface. The boundary
of D1 can be calculated analytically as follows. Let us fix the
angle � on the Poincaré surface. If the angular momentum L
satisfies the relation L−����L�L+���, then �L ,���D1,
where L±��� are defined by the angular momenta of the orbits
that run through the points �	r ,0�, respectively �see Fig. 1�.
More precisely, L±��� are defined as

L±��� = ± r sin�� − 
±�

= ± rR cos ��R2 + r2 	 2Rr sin ��−1/2, �1�

where 
± are defined by the angles between the horizontal
axis and the orbits that run through the points �	r ,0�,
respectively �see Fig. 1�, and given by

tan 
± = R cos �/�− R sin � ± r� .

Next, let us consider the domain with negative angular mo-
mentum, L−����L�0; the positive domain L�0 can be
treated in the same way because of the symmetry. Solving
the equation �L−����2�L2 in terms of �, the first escape do-
main for L�0 can be represented as

D1 = ��L,�� � D−��−�L� � � � �+�L�� , �2�

where D−= ��L ,��� �−r ,0�� �−� /2 ,� ,2�� is the chaotic re-
gion with negative angular momentum and �±�L� are defined
as

�±�L� = arcsin�− L2 ± 	L4 − L2�R2 + r2� + r2R2

rR

 . �3�

The functions �±�L� define the boundary of the first escape
domain D1.

An orbit of the billiard flow starting from the first escape
domain exits the cap region and stays in the stem for some
time; and then it returns to the cap and reaches again to the
Poincaré surface. We define the injection domain Din on the
Poincaré surface as all such just returning points, more pre-
cisely, we define Dinª��D1�. Din can be derived in the
same way as D1;

Din = ��L,�� � D−��in
− �L� � � � �in

+ �L�� , �4�

where the functions �in
± �L� are defined by

L(θ)+

−L(θ)ϕ ϕ−+ θ

h

2r

R

O

A

B

P

FIG. 1. The shape of the table of the mushroom billiard �the
solid lines�, which consists of a half disk �the cap� and a rectangle
�the stem�. A point particle inside the table moves freely except for
the elastic collisions with the walls. The absolute value of the an-
gular momentum �L� equals the distance between the origin and the
trajectory �see Sec. II A�. The boundaries L±��� of the first escape
domain L−����L�L+��� are also displayed �see Sec. II B�.
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FIG. 2. The Poincaré surface for R=1, r=0.5, and h=1. The
region �L��0.5 is chaotic and the other integrable.
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�in
± �L� = arcsin�L2 ± 	L4 − L2�R2 + r2� + r2R2

rR

 . �5�

In Fig. 3, �±�L� and �in
± �L� are displayed for R=1, r=0.5 and

h�0.

C. The inverse of the Poincaré map

When an orbit collides with the bottom of the cap

W ª ��x,y��x � �− R,− r� � �r,R�,y = 0� , �6�

the angular momentum changes its sign. We should take into
account the collisions with this wall W, because we reduce
the Poincaré map to the domain with negative angular mo-
mentum L�0. Let us consider the domain D− \Din and its
inverse image �−1�D− \Din�. The orbits �namely, continuous
time flow� connecting points �L ,���D− \Din and �−1�L ,��
��−1�D− \Din� are classified into two classes for fixed �:
when L�L0���, there is no collision with the wall W, and
when L�L0���, there is a collision with the wall W �see Fig.
4�a��. In Fig. 4�a�, the orbit for the critical case L=L0��� is
displayed by the dashed line. We can define L0��� by

L0��� = − R cos�� − �� , �7�

where � is defined as depicted in Fig. 4�a�. Furthermore,
using tan �=cos � / �1−sin ��, we have

L0��� = − R�2 − 2 sin ��−1/2 cos � . �8�

Solving the inequalities L�L0��� and L�L0��� in terms of
�, we have a result: when ���0�L� there is no collision with
the wall W, and when ���0�L� there is a collision with the
wall W, where �0�L� is defined by

�0�L� = arcsin�2L2

R2 − 1
 . �9�

Using these results and definitions, we can construct the
inverse of the Poincaré map �−1 on D− \Din as follows �see
Fig. 4�b��,

�−1�L,�� = ��L,� + � − 2 arcsin� L

R
�
 if � � �0�L� ,

�L,� − 2 arcsin� L

R
�
 if � � �0�L� .

�10�

Notice that the angular momentum is unchanged by the col-
lisions with the arc, and that we restrict the domain of the
inverse map on the region L�0 by identifying the points �
−L ,−�� with �L ,�� when the point particle collides with the
wall W, i.e., when ���0�L�.

III. THE INFINITE PARTITION

Using the inverse map �−1, we can define the nth escape
domain Dn recursively:

Dn = �−1�Dn−1 \ Din� �n = 2,3, . . . � . �11�

Note that we should remove Din from Dn−1 in the recursion
relation Eq. �11�, because the inverse image of the injection
domain �−1�Din� equals the first escape domain D1.

We fix the parameters as R=1, r=0.5 and h�0 in the
following and explicitly derive the boundaries of the nth es-
cape domain Dn. First, we derive explicitly the first four
escape domains in order to confirm that these four domains
fill the domain D− as in Fig. 5�a� except for the three regions
E1, E2, and E3. Then the boundary of the nth escape domain
�n�5� can be derived recursively.

Let us start with n=2 in Eq. �11�. The domain D1 /Din can
be divided into three pieces:

-0.5 -0.4 -0.3 -0.2 -0.1 0
L

-1
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θ

θ (L)-

θ (L)+

θ (L)-

+θ (L)
in

in
θ (L)0

FIG. 3. The boundaries �+�L� �the solid line�, �−�L� �the dotted
line�, �in

+ �L� �the dashed line�, �in
− �L� �the dotted-dashed line�, and

�0�L� �the dotted-two-dashed line� are displayed. We set the system
parameters as R=1, r=0.5, and h�0. The region with negative
angular momentum L�0 is displayed.

ψ
θ

L (θ)ο

W

φ

θ θ’
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(a) (b)
FIG. 4. �a� A classification of

orbits for fixed �: if L0����L�
�0� there is a collision with the
wall W and if L�L0�����0� there
is no collision. Note that we con-
sider only L�0. In the figure, we
display the critical case L=L0���
by the dashed line. �b� The inverse
of the Poincaré map can be de-
rived using equations �=��+�
−2� and �=arcsin �L /R�.
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D1/Din = ��L,����−�L� � � � �0�L��

� ��L,����0�L� � � � �+�L�,− r � L � L−�0��

� ��L,����0�L� � � � �in
− �L�,L−�0� � L � 0� ,

�12�

where L−�0� is defined by Eq. �1� �see also Fig. 5�b��. In Eq.
�12�, we abbreviate the expression �L ,���D− to �L ,�� for
simplicity. We use the same abbreviation in what follows.
Let us represent the three sets on the right-hand side as F1

1,
F2

1, and F3
1, respectively; namely, D1 /Din=F1

1�F2
1�F3

1.
These three sets are displayed in Fig. 5�b�. Using these no-
tations and the inverse map �−1 �Eq. �10��, the second es-
cape domain D2 is given by

D2 = �−1�D1/Din� = �−1�F1
1� � �−1�F2

1� � �−1�F3
1� .

�13�

Let us denote the � component of �−1�L ,�� as L���, and
the inverse image of F1

1 as F1
2��−1�F1

1�. Using these defi-
nitions, we have

F1
2 = ��L,���L

„�−�L�… � � � L
„�0�L�…�

= ��L,����−�L� + � − 2 arcsin�L� � � � ��/2�� . �14�

Similarly, we define the inverse image of F2
1 as F2

2

��−1�F2
1�, and we have

F2
2 = ��L,���L

„�0�L�… � � � L
„�+�L�…,− r � L � L−�0��

= ��L,���− �/2 � � � �+�L� − 2 arcsin�L�,− r � L

� L−�0�� . �15�

Finally, let us define the inverse image of F3
1 as F3

2

��−1�F3
1�, and we get

F3
2 = ��L,���L

„�0�L�… � � � L
„�in

− �L�…,L−�0� � L � 0�

= ��L,���− �/2 � � � �−�L�,L−�0� � L � 0� , �16�

where we have used the relation �−�L�−�in
− �L�=−2 arcsin�L�.

In Eq. �16�, the upper bound for � is �=�−�L�, which is
equivalent to the lower bound of the domain D1. These three
sets �F1

2 ,F2
2 ,F3

2� are displayed in Fig. 5�b�.
Next, we derive the third escape domain D3. It can be

proved that D2�Din=�, because the inequality �−�L�+�
−2 arcsin�L���in

+ �L� holds �see the lower bound of the do-

main F1
2 which is defined by the second line of Eq. �14��. It

follows that D3=�−1�D2�=�−1�F1
2���−1�F2

2���−1�F3
2� by

Eq. �11�, where the three sets of the right-hand side can be
calculated as

�−1�F1
2� = ��L,���L

„�−�L� + � − 2 arcsin�L�… � �

� L��/2��

= ��L,����−�L� + � − 4 arcsin�L� � � � �/2

− 2 arcsin�L�� , �17�

and, in the same way, as

�−1�F2
2� = ��L,����/2 − 2 arcsin�L� � � � �+�L� + �

− 4 arcsin�L�,− r � L � L−�0�� ,

�−1�F3
2� = ��L,����/2 − 2 arcsin�L� � � � �−�L� + �

− 2 arcsin�L�,L−�0� � L � 0� .

Note that the relation �−1�F1
2��Din holds, because of the

inequalities �in
+ �L��

�
2 −2 arcsin�L� and �−�L�+�

−4 arcsin�L���in
− �L�. Therefore, the fourth escape domain

D4 is represented by D4=�−1�D3 /Din�=�−1�F1
3���−1�F2

3�,
where we define

F1
3 = ��L,����in

+ �L� � � � �+�L� + � − 4 arcsin�L�,

− r � L � L−�0�� , �18�

F2
3 = ��L,����in

+ �L� � � � �−�L� + � − 2 arcsin�L�,

L−�0� � L � 0� . �19�

These sets �F1
3 ,F2

3� are displayed in Fig. 5�b�. Thus, the
fourth escape domain D4 is given by the union of the follow-
ing sets:

�−1�F1
3� = ��L,����+�L� � � � �+�L� + � − 6 arcsin�L� ,

− r � L � L−�0�� , �20�

�−1�F2
3� = ��L,����+�L� � � � �−�L� + � − 4 arcsin�L� ,

L−�0� � L � 0� , �21�

where we have used the relation �+�L�−�in
+ �L�=−2 arcsin�L�.

The lower bounds for � of these two sets are �=�+�L�; and
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FIG. 5. �a� The first four escape domains D1

−D4 are displayed. The second escape domain
D2 is separated into two parts. The remaining part
consists of three pieces, which we define as E0,
E1, and E2. �b� The regions Fi
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dotted line indicates the boundary of the injection
domain.
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the upper bounds of the set �−1�F2
3� is equivalent to the

lower bound of D3.
From the above results, the domain D− is covered by the

four sets D1, D2, D3, and D4 except for the three regions E0,
E1, and E2 as illustrated in Figs. 5�a� and 5�b�. The boundary
of the nth escape domain �n�5� can be obtained by recur-
sively calculating the inverse mapping �−1 of the upper
bound of the set �−1�F1

3�, which is given by Eq. �20� as �
=�+�L�+�−6 arcsin�L�. Thus, let us define the boundary be-
tween the domains D3n+1 and D3�n+1�+1 as �3n+1�L� �n�1�,
we have

�3n+1�L� = �+�L� + n� − 6n arcsin�L� . �22�

Similarly, defining the boundaries between D3n+2 and
D3�n+1�+2 as �3n+2�L�, and between D3n and D3�n+1� as �3n�L�,
we have

�3n+2�L� = �+�L� + n� − 2�3n + 1�arcsin�L� , �23�

�3n�L� = �+�L� + n� − 2�3n − 1�arcsin�L� , �24�

respectively. In Figs. 6�a� and 6�b�, we depict these bound-
aries �n�L� up to n=31.

IV. THE ESCAPE TIME DISTRIBUTION

Finally, we derive a scaling property of the escape time
distribution fesc�n�. The escape time is defined by the number
of collisions with the top arc of the cap just after an orbit
enters the cap region until it escapes from there.

Since the Poincaré map is area preserving, the physically
natural invariant measure of the Poincaré map is the
Lebesgue measure. Thus the probability that the escape time
equals n is given by the Lebesgue measure Sn

in of the region
Dn�Din, that is, fesc�n�=Sn

in. Note that S3n
in =S3n−1

in =0 �n
=2,3 , . . . �, and thus only S3n+1

in �n=1,2 , . . . � have finite val-
ues �see Figs. 6�a� and 6�b��.

Let us derive the intersection points of the lines �3n+1�L�
=�+�L�+n�−6n arcsin�L� �Eq. �22�� and ��L�=0. Using the
Taylor expansions arcsin x� ± �

6 + 2
	3

�x	
1
2

� �as x� ± 1
2 �, we

have

�3n+1�L� � −
�

6
+

2
	3

�3n + 1��2L + 1� + 	2�2L + 1�1/2,

�25�

as n→�. Setting this to 0, and solving in terms of L, we
have 2L+1� 1

3n+1 � 1
n . Thus we find that the width of the

�3n+1�-th escape domain is proportional to 1/n2. It follows
that the area of the nth escape domain Sn behaves as

Sn �
1

n2 , �26�

as n→�. Note that S3n+1=S3n=S3n−1 for n=2,3 , . . ., because
the domains D3n and D3n−1 have no intersection with the
domain Din. Equation �26� shows that the partition con-
structed in the previous section is infinite. Finally, we get

S3n+1
in = S3n+1 − S3n+4 �

1

n3 , �27�

as n→�. And, as mentioned above, the equalities S3n
in

=S3n−1
in =0 hold. This power law perfectly agrees with the

numerical result shown in Fig. 7, where the cumulative dis-
tribution
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FIG. 6. �a� The infinite partition constructed
in terms of the escape time. The solid lines rep-
resent boundaries between regions with different
escape times. The right side of the broken line is
the injection domain. The boundaries of the do-
mains with the escape times longer than 32 are
omitted. �b� A magnification of Fig. 6�a� in a
neighborhood of the outermost tori �L=−0.5�.
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time of the domain where the number is located.
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Fesc�n� ª �
j=n+1

�

fesc�j� �28�

is displayed by the solid line. Note that this numerical result
has already been reported by Altmann et al. �20�. In the inset,
a magnification is displayed, which shows a clear stepwise
structure with decreases exactly at n=3k+1 �k=1,2 , . . . �.
This implies that fesc�3k�= fesc�3k+2�=0, and that the only
fesc�3k+1� have finite values �k�2�. Thus, these results also
agree with the analytical results.

V. CONCLUDING REMARKS

In conclusion, we have derived the escape time distribu-
tion by constructing the infinite partition in terms of the es-
cape time. Note that, however, the escape “time” in this pa-
per is the number of collisions until the particle escapes.
Thus the escape time for the continuous time flow might be
slightly different. But the scaling exponents should be the
same, because the flight time of the chaotic orbits between
collisions in the cap region is nonvanishing. This is con-
firmed numerically and the result is displayed in Fig. 7 which
shows the agreement of the scaling exponents of these two
distributions.

There are several points that should be verified in future
studies. First, the correlation functions of this system exhibit
power law behaviors �Fig. 8, see also, Ref. �17��, and it is
expected that there is a relation between the scaling exponent
of the escape time distribution and that of the correlation
function �16�. Second, it is important to elucidate whether
the results in this paper are general or not for other parameter
values R�2r. Third, it is also important to consider how

general the results of the present paper are in Hamiltonian
systems. Especially, it is necessary to investigate systems
with 3 and more degrees of freedom �DOF�, because the
mushroom billiard is a system with 2 DOF, while systems
with 3 and more DOF differ qualitatively from systems with
2 DOF by the presence of Arnold diffusion �4�.
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FIG. 8. The autocorrelation function of the absolute value of the
angular momentum �L�− ��L�� �the solid line� in log-log scale, where
�¯� means the ensemble average in terms of the Lebesgue measure
in the chaotic domain. The broken line represents a function f�n�
�1/n, which is a guide to the eye.
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